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Abstract

In this paper, we focus on the problem of point-to-set
classification, where single points are matched against sets
of correlated points. Since the points commonly lie in Eu-
clidean space while the sets are typically modeled as ele-
ments on Riemannian manifold, they can be treated as Eu-
clidean points and Riemannian points respectively. To learn
a metric between the heterogeneous points, we propose
a novel Euclidean-to-Riemannian metric learning frame-
work. Specifically, by exploiting typical Riemannian met-
rics, the Riemannian manifold is first embedded into a high
dimensional Hilbert space to reduce the gaps between the
heterogeneous spaces and meanwhile respect the Rieman-
nian geometry of the manifold. The final distance metric
is then learned by pursuing multiple transformations from
the Hilbert space and the original Euclidean space (or its
corresponding Hilbert space) to a common Euclidean sub-
space, where classical Euclidean distances of transformed
heterogeneous points can be measured. Extensive experi-
ments clearly demonstrate the superiority of our proposed
approach over the state-of-the-art methods.

1. Introduction
In computer vision and pattern recognition field, objects

(e.g., images) are often described in terms of feature vec-
tors, each of which can be considered as a point ly-
ing in Euclidean space RD. Designed for point-to-point
classification, a large number of metric learning methods
[6, 5, 24, 15, 27, 25] make great efforts to learn an appro-
priate point-to-point distance metric in Euclidean space(s).
In recent years, increasing approaches [4, 22, 3, 28] are pro-
posed to define or learn a point-to-set distance metric for
point-to-set classification, which is performed to match sin-
gle points against sets of correlated points.

By treating sets as subspace-based models, Nearest Fea-
ture Subspace (NFS) [4], K-local Hyperplane (Convex) Dis-
tance Nearest Neighbor (HKNN, CKNN) [22] and Nearest
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Figure 1. Illustration of conventional Euclidean Metric Learn-
ing, Euclidean-to-Euclidean Metric Learning and our proposed
Euclidean-to-Riemannian Metric Learning. RD/RD1/RD2 , M
and Rd indicate Euclidean space, Riemannian manifold and com-
mon subspace respectively. f, g, ϕ denote the transformations, and
different shapes (i.e., circles and rectangles) represent classes.

Hyperdisk (NHD) [3] classifiers have attempted to mea-
sure point-to-set distance. More recently, Point-to-Set Dis-
tance Metric Learning (PSDML) [28] is proposed to learn
a proper metric between pairs of single points in Euclidean
space to get more accurate point-to-set distance for classi-
fication. However, few of these methods consider the non-
Euclidean geometry of the space of their subspace-based
set models, which typically reside on certain Riemannian
manifolds [8, 7, 23]. As is well known, ignoring the under-
lying data structure and distributions in the learning stage
will probably lead to undesirable metrics.

In light of the success of modeling sets as points on spe-
cific Riemannian manifolds [8, 7, 23], we propose to learn a
distance metric between points in Euclidean space RD and
points on Riemannian manifoldM for point-to-set classifi-
cation. As illustrated in Fig.1(c), the new distance metric is

1

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.217

1671

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.217

1677

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.217

1677



learned by seeking different transformations f , ϕ from the
heterogeneous spaces RD and M to a common Euclidean
subspace Rd. However, the gaps of RD andM is so large
that learning the mappings on them is not trivial. Therefore,
we design a unified framework to first embed the manifold
M into a high dimensional Hilbert space where Euclidean
geometry applies. During the Hilbert space embedding, we
also encode the Riemannian geometry of M by exploit-
ing typical Riemannian metrics [8, 7, 1]. Finally, we learn
the distance metric on the Hilbert space and the Euclidean
space RD (or its corresponding Hilbert space). To our best
knowledge, this paper makes the first attempt to propose a
Euclidean-to-Riemannian Metric Learning framework for
the problem of the point-to-set classification.

2. Metric Learning Methods
In metric learning, the learned distance metric is usually

defined as Mahalanobis distance, which is the squared Eu-
clidean distance after applying the learned linear transfor-
mation(s) on original Euclidean space(s). According to the
number of the original spaces, traditional metric learning
methods can be categorized into Euclidean metric learning
and Euclidean-to-Euclidean metric learning.

As shown in Fig.1(a), the Euclidean metric learning
methods [6, 5, 20, 24, 28] intend to learn a metric or a trans-
formation f of object features from an original Euclidean
space RD to a new one Rd. For example, Davis et al. [5]
presented Information Theoretic Metric Learning (ITML)
by adopting an information-theoretic formulation to learn a
metric on one original Euclidean space. Weinberger et al.
[24] proposed Large Margin Nearest Neighbor (LMNN) to
learn a transformation from one Euclidean space to a new
one for K-Nearest Neighbor (KNN) by pulling neighboring
objects of the same class closer and pushing others further.
Recently, Zhu et al. [28] developed Point-to-Set Distance
Metric Learning (PSDML) to learn a metric between points
in a single Euclidean space for more appropriate point-to-
set distance to apply in point-to-set classification task.

In contrast, as depicted in Fig.1(b), Euclidean-to-
Euclidean metric learning methods [2, 17, 15, 27, 25, 14]
are designed to learn a metric or multiple transformations
f, g mapping object features from multiple original Eu-
clidean spaces, say RD1 , RD2 , to a common subspace Rd.
For instance, Quadrianto et al. [17] proposed a metric learn-
ing method to seek multiple projections with neighborhood
preserving constraint for multi-view data in multiple orig-
inal Euclidean spaces. McFee and Lanckriet [15] applied
multiple kernel/metric learning technique to integrate dif-
ferent object features from multiple Euclidean spaces to
a unified Euclidean space. Zhai et al. [27] developed a
method to learn two transformations of cross-view objects
from two different Euclidean spaces to a common subspace
by integrating them into a joint graph regularization.

3. Background
In this section, we review the Riemannian metrics for

several Riemannian manifolds and introduce the existing
Euclidean-to-Riemannian metrics in previous literatures.

3.1. Riemannian metric

In computer vision, sets (of images) are typically mod-
eled as linear subspaces [26, 4, 8], affine subspaces [22, 7,
28] or covariance matrices [23, 21], which lie on specif-
ic Riemannian manifolds, namely Grassmannian manifold,
Affine Grassmannian manifold and Symmetric Positive
Definite (SPD) matrix manifold respectively. Such different
Riemannian manifolds are often accompanied with differ-
ent Riemannian metrics as follows.

Grassmannian metric: A Grassmannian manifold
G(D′

, D) is defined as the space of D
′
-dimensional lin-

ear subspaces of Euclidean space RD [8]. An element of
G(D′

, D) is represented by an orthonormal matrix U ∈
RD×D

′

, whose column vectors span the subspace. For
two points Ui , Uj on the manifold G(D′

, D), their dis-
tance can be measured by one of the most popular metrics
namely Projection metric [8]:

d(Ui,Uj) = 2−1/2‖UiUT
i −UjUT

j ‖F . (1)

Affine Grassmannian metric: An Affine Grassmannian
manifold AG(D′

, D) is the space of D
′
-dimensional affine

subspaces of Euclidean space RD, which is simply a lin-
ear subspace with an offset [7]. Therefore, each point on
AG(D′

, D) is denoted by an affine span A with an or-
thonormal matrix U ∈ RD×D

′

adding the offset µ ∈ RD
(i.e., the mean of one set of Euclidean points) from the ori-
gin. In this case, the distance of two points Ai and Aj on
the manifold AG(D′

, D) is measured by [7]:

d(Ai,Aj) = 2−1/2(‖UiUT
i −UjUT

j ‖F
+ ‖(I −UiUT

i )µi − (I −UjUT
j )µj‖F ).

(2)
where I ∈ RD×D is the identity matrix.

Symmetric Positive Definite metric: The space of
(D × D)-dimensional Symmetric Positive Definite (SPD)
matrices is mostly studied when endowed with a Rieman-
nian metric and thus forms a Riemannian manifold Sym+

D

[16, 1]. On the manifold Sym+
D, the distance between two

points Ci, Cj ∈ RD×D can be measured by the Log-
Euclidean Distance (LED) [1], which is a true geodesic dis-
tance and expressed by Euclidean computations in the do-
main of matrix logarithms:

d(Ci,Cj) = ‖log(Ci)− log(Cj)‖F . (3)

3.2. Euclidean-to-Riemannian metric

For point-to-set classification, several works [4, 22, 3]
represented the sets as subspace-based models to define
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various point-to-set distances, which can be regarded as
Euclidean-to-Riemannian metrics by treating each point xi
in Euclidean space RD and modeling each set model as one
element (with the same notation as above) on a specific Rie-
mannian manifoldM.

Eucliean-to-Grassmannian metric: In Nearest Feature
Subspace (NFS) classifier [4], the sets are modeled as linear
subspaces, which lie on Grassmannian manifold. The NFS
calculates the distance between Euclidean point xi and the
linear subspace representation Uj in the following:

d(xi,Uj) = ‖xi −UjUT
j xi‖F . (4)

Eucliean-to-AffineGrassmannian metric: K-local Hy-
perplane Distance Nearest Neighbor (HKNN) algorithm
[22] models the sets as affine subspaces lying on Affine
Grassmannian manifold. It defines the distance between the
Euclidean point xi and the affine subspaceAj as follows:

d(xi,Aj) = min
α
‖(Ujα+ µj)− xi‖2. (5)

where α is a vector of coordinates for the points withinAj .
Euclidean-to-SPD metric: Classical Mahalanobis Dis-

tance (MD) can be used to define the distance between the
Euclidean point xi and the covariance matrixCj , which ac-
tually is a SPD matrix and thus residing on SPD manifold:

d(xi,Cj) =
√
(xi − µj)TC−1

j (xi − µj). (6)

where µj is the mean of the samples in the set.

4. Learning Euclidean-to-Riemannian Metric
In this section, we first present our proposed framework

of Learning Euclidean-to-Riemannian Metric (LERM) for
point-to-set classification and then introduce its implemen-
tations in three Euclidean-to-Riemannian cases. Lastly, we
will also provide a brief discussion on the relationship of
our framework with other traditional learning schemes.

4.1. Problem formulation

As described in Sec.3, with the usual representations for
the points and the sets, the task of point-to-set classification
is formulated as the problem of matching Euclidean points
with Riemannian points. In this paper, we denote a collec-
tion of Euclidean points by X = {x1,x2, . . . ,xm} ⊂ RD
with class labels {lx1 , lx2 , . . . , lxm} and a collection of Rie-
mannian points by Y = {y1, y2, . . . , yn} ⊂ M with class
labels {ly1, l

y
2, . . . , l

y
n}, where yj may come in the form of

Uj ,Aj ,Cj as denoted in Sec.3, depending on the type of
the corresponding Riemannian manifold.

Given one pair of Euclidean point xi and Riemannian
point yj , we use d(xi, yj) to represent the distance between
them. To achieve an appropriate distance metric between
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Figure 2. Three Mapping Modes. RD , M, Hx/Hy, Rd represent
Euclidean space, Riemannian manifold, Hilbert space and com-
mon subspace. fx/fy, ϕx/ϕy denote linear and nonlinear trans-
formation functions, different shapes represent classes.

the two heterogeneous points, we need to learn two trans-
formation functions f and ϕ, which respectively map the
Euclidean points and Riemannian points to a common sub-
space. The learned distance metric reduces to classicial Eu-
clidean distance in the common subspace as:

d(xi, yj) =
√
(f(xi)− ϕ(yj))T (f(xi)− ϕ(yj)). (7)

However, the gaps of Euclidean space and Riemanni-
an manifold is too large to embed them into the common
subspace straightforwardly. To deal with this problem, we
first embed the Riemannian manifold into a high dimen-
sional Hilbert space, which adheres to Euclidean geome-
try and thus reduces the heterogeneity between the original
spaces. In addition, by exploiting typical Riemannian met-
rics [8, 7, 1], this Hilbert space embedding can account for
the geometry of the Riemannian manifold [11]. After the
embedding, multiple mappings are learned from the Hilbert
space and the original Euclidean space (or its corresponding
Hilbert space) to the final common subspace. According-
ly, we design three Mapping Modes to embed the Hilbert
space(s) and learn the mappings in different ways.

Mapping Mode I: As shown in Fig.2(a), this mode first
maps the Riemannian points to a Hilbert spaceHy by a non-
linear transformation function ϕy : M → Hy. In general,
since the form of ϕy is usually implicit, we exploit kernel
functions based on Riemannian metrics [8, 7, 1] to define
its inner product. The transformed Riemannian points in
the Hilbert space Hy and the Euclidean points in original
Euclidean space RD can be further projected into a common
subspace Rd by two linear projection functions fx and fy.
Consequently, the final mappings for Euclidean points and
Riemannian points are f = fx and ϕ = fy ◦ ϕy.

Mapping Mode II: As illustrated in Fig.2(b), the sec-
ond mode implicitly maps the Euclidean points by a implic-
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it mapping ϕx : RD → Hx to one Hilbert space Hx for
obtaining richer representations of the original data. Addi-
tionally, this mode also transforms the Remiannian points
to another Hilbert space Hy. The heterogeneous points are
then projected from the two different Hilbert spacesHx,Hy

to a common subspace Rd by the final transformation func-
tions f = fx ◦ ϕx and ϕ = fy ◦ ϕy.

Mapping Mode III: As depicted in Fig.2(c), this mode
simultaneously applies single-space and cross-space ker-
nel functions to define the inner products of the implicit
mappings ϕx and ϕy for Euclidean points and Riemanni-
an points transforming to the corresponding Hilbert spaces
Hx,Hy. The single-space kernel functions are based on the
classical Euclidean metric or Riemannian metrics [8, 7, 1],
whereas the cross-space kernel functions are defined by the
basic Euclidean-to-Riemannian metrics [4, 22]. With the fi-
nal mappings f = fx ◦ ϕx and ϕ = fy ◦ ϕy, the Euclidean
and Riemannian points are transformed through the Hilbert
spaces Hx,Hy to the final common subspace Rd for mea-
suring their Euclidean distances.

4.2. Objective function

We formulate a objective function for our Euclidean-to-
Riemannian metric learning framework as follows:

min
f,ϕ
{D(f, ϕ) + λ1G(f, ϕ) + λ2T (f, ϕ)} (8)

where D(f, ϕ) is the distance constraint item defined
on the collections of similarity and dissimilarity con-
straints, G(f, ϕ) is discriminant geometry constraint item
and T (f, ϕ) is transformation constraint item, which are
regularizers defined on the target parameter functions f and
ϕ, λ1 > 0, λ2 > 0 are the balancing parameters.

Distance constraint: This constraint item is defined
in the way such that the distances between the Euclidean
points and the Riemannian points with the similarity (dis-
similarity) constraints are minimized (maximized). In this
paper, we adopt classical expression of the sum of squared
distances to define this item as:

D(f, ϕ) =
1

2

m∑
i=1

n∑
j=1

Z(i, j)‖f(xi)− ϕ(yj)‖2,

Z(i, j) =

{
1, if lxi = lyj ,

−1, if lxi 6= lyj .

(9)

where Z(i, j) indicates the heterogeneous points xi and yj
are relevant or irrelevant inferred from the class label. To
balance the effect of similarity constraints and dissimilarity
ones, we normalize the elements of Z by averaging them
with the total number of similar/dissimilar pairs.

Discriminant geometry constraint: This constraint
item aims to preserve Euclidean geometry and Riemanni-
an geometry respectively for the Euclidean and Rieman-
nian points. Thus, it can be defined as: G(f, ϕ) =

Gx(f) + Gy(ϕ), which are Euclidean and Riemannian ge-
ometry preserving items formulated as:

Gx(f) =
1

2

m∑
i=1

m∑
j=1

Zx(i, j)‖f(xi)− f(xj)‖2,

Zx(i, j) =


dij , if lxi = lxj and k1(i, j),
−dij , if lxi 6= lxj and k2(i, j),
0, else.

(10)

Gy(ϕ) =
1

2

n∑
i=1

n∑
j=1

Zy(i, j)‖ϕ(yi)− ϕ(yj)‖2,

Zy(i, j) =


dij , if lyi = lyj and k1(i, j),
−dij , if lyi 6= lyj and k2(i, j),
0, else.

(11)

where dij = exp(‖zi − zj‖2/σ2), z indicates x or y.
k1(i, j)/k2(i, j) means point i is in the k1/k2 neighborhood
of point j or point j is in the k1/k2 neighborhood of point i.

Transformation constraint: Since Euclidean distance
will be used in the target common subspace where all di-
mensions are uniformly treated, it is reasonable to require
the feature vectors satisfy isotropic distribution. Thus, this
constraint item can be expressed in terms of unit covariance:

T (f, ϕ) =
1

2
(‖f(X)‖2F + ‖ϕ(Y)‖2F ). (12)

4.3. Iterative optimization

We propose an iterative method to minimize the objec-
tive function in Eq.8. According to the proposed Map-
ping Mode I,II,III, the learned transformation functions are
f = fx(◦ϕx) and ϕ = fy ◦ ϕy, where the linear projec-
tions fx(xi) = V T

x xi and fy(yj) = V T
y yj . Without loss

of generality, we here just consider the case f = fx ◦ ϕx
for simplicity. By taking inner products with a parame-
ter in the Hilbert spaces, we find f(xi) = V T

x ϕx(xi) =∑
jW

T
x ϕx(xj)ϕx(xi) =W

T
x Kx.i

, whereKx(xi,xj) =
〈ϕx(xi), ϕx(xj)〉. Employing this kernel trick, the func-
tion ϕ can also be reduced to ϕ(yj) = W T

y Ky.j , where
Ky(yi, yj) = 〈ϕy(yi), ϕy(yj)〉. Then, Eq.9, Eq.10 and
Eq.11 can be re-written in matrix formulations as:

D(Wx,Wy) =
1

2
(W T

x KxB
′

xK
T
xWx +W

T
y KyB

′

yK
T
y Wy

− 2W T
x KxZKyW

T
y ).

(13)
Gx(Wx) =W

T
x KxBxK

T
xWx −W T

x KxZxK
T
xWx

=W T
x KxLxK

T
xWx.

(14)
Gy(Wy) =W

T
y KyByK

T
y Wy −W T

y KyZyK
T
y Wy

=W T
y KyLyK

T
y Wy.

(15)
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where B
′

x, B
′

y, Bx and By are diagonal matrices with
B

′

x(i, i) =
∑n
j=1Z(i, j), B

′

y(j, j) =
∑m
i=1Z(i, j),

Bx(i, i) =
∑m
j=1Zx(i, j),By(i, i) =

∑n
j=1Zy(i, j).

Initialization. We define the within-class and between-
class templates for Z, Zx and Zy. Take Z for example, the
within-class and between-class templates are formulated as:

Zw(i, j) =

{
1, if lxi = lyj ,

0, if lxi 6= lyj .
,Zb(i, j) =

{
0, if lxi = lyj ,

1, if lxi 6= lyj .

(16)
Replacing Z with Zw and Zb in Eq.13, we get the within-
class and the between-class templates for D(Wx,Wy) de-
noted by Dw(Wx,Wy) and Db(Wx,Wy).

Likewise, we get the within and between-class templates
for Gx and Gy in Eq.14 and Eq.15 respectively denoted by
Gwx , Gbx, Gwy , Gby. Then we can initialize Wx and Wy by
maximizing the sum of the between-class templates while
minimizing the sum of the within-class templates as:

max
Wx,Wy

{Db(Wx,Wy) + λ1G
b(Wx,Wy)},

s.t. Dw(Wx,Wy) + λ1G
w(Wx,Wy) = 1.

(17)

where Gb = Gbx + Gby and Gw = Gwx + Gwy . Then, it can
reach the optimization by a standard generalized eigenvalue
problem that can be solved using any eigensolver1.

Fix Wy to update Wx. Let Q(Wx,Wy) denote the
objective function in Eq.8. Differentiating Q(Wx,Wy) in
Eq.8 (combined with Eq.13, 14, 15) w.r.t.Wx and setting it
to zero, we have the following equation:

∂Q(Wx,Wy)

∂Wx
=KxB

′

xK
T
xWx −KxZK

T
y Wy

+ 2λ1KxLxK
T
xWx + 2λ2KxK

T
xWx = 0.

(18)
Then we obtain the analytical solution as follows:

Wx = (Kx(B
′

x + 2λ1Lx + 2λ2I)K
T
x )

−1KxZK
T
y Wy.

(19)
Fix Wx to update Wy. Similarly, by differentiating

Q(Wx,Wy) in Eq.8 (with Eq.13, 14, 15) w.r.t.Wx and set-
ting it to zero, we obtain the solution:

Wy = (Ky(B
′

y + 2λ1Ly + 2λ2I)K
T
y )

−1KyZK
T
xWx.

(20)
We alternate the above updates of Wx and Wy for sev-

eral iterations to search an optimal solution. Although pro-
viding a theoretical proof of uniqueness or convergence of
the proposed iterative optimization is hard, we found it can
make our objective function Eq.8 converge to a stable and
desirable solution after tens of iterations. As for more de-
tailed experimental results with quantitative analysis, we re-
fer the reader to the Supplementary Material.

1Please kindly refer to our Supplementary Material for more details.

4.4. Implementations for different Euclidean-to-
Riemannian cases

According to which type of manifold set models lie on, it
generates Euclidean-to-Grassmannian (EG), Euclidean-to-
AffineGrassmannian (EA) and Euclidean-to-SPD (ES) cas-
es. In all cases, as mentioned in Sec.4.1, the mapping of
Mapping Mode I for the Euclidean points is linear while
the one of Mapping Mode II is non-linear transformation,
whose inner product can be defined by the Gaussian Ra-
dial Basis Function (RBF), i.e., K

′

x(i, j) = exp(−‖xi −
xj‖2/2σ2). Inspired by [11], to define positive definite
kernels on manifolds, we replace the Euclidean distance
by specific Riemannian metric or Euclidean-to-Riemannian
metric on given cases. Specifically, let K

′

y and K
′

xy denote
the Riemannian metric based kernel and the Euclidean-to-
Riemannian metric based kernel respectively. The final ker-
nels Ky =K

′

y in Mapping Mode I and II while Kx =K
′

x

in Mapping Mode II. For Mapping Mode III, the final ker-
nelsKx = [K

′

x,K
′

xy],Ky = [K
′

y, (K
′

xy)
T ].

Take the ES case for example, we employ the Riemanni-
an metric in Eq.3 to define a Gaussian kernel for points on
SPD manifold as following:

K
′

y(i, j) = exp(−d2(Ci,Cj)/2σ2) (21)

In Mapping Mode III, for both Euclidean and Riemannian
points, we also define a Euclidean-to-SPD Gaussian kernel
by using the traditional Mahalanobis Distance in Eq.6:

K
′

xy(i, j) = exp(−d2(xi,Cj)/2σ2) (22)

Likewise, for the EG case and the EA case, we can de-
fine their Riemannian metric based kernels and Euclidean-
to-Riemannian metric based kernels by exploiting corre-
sponding metrics in Eq.1, Eq.2, Eq.4 and Eq.5 respectively.

4.5. Discussion

Generally speaking, our metric learning framework can
be viewed as a two-stage procedure, which firstly embeds
the heterogeneous spaces into Hilbert spaces, and then
learns the multiple transformations from the Hilbert spaces
to a common subspace. Hence, existing Kernelized Multi-
View Learning (KML) methods, e.g., Kernel Partial Least
Squares (KPLS) [18], Kernel Canonical Correlation Analy-
sis (KCCA) [9] and Kernel Generalized Multiview Analysis
(KGMA) [19], can be easily used as alternatives in the sec-
ond stage. Compared with our method, such KML methods
commonly work on a couple of single-space kernels in tra-
ditional way, and thus can only couple with our proposed
Mapping Mode II. Besides, most of them only take account
of positive pairs, while ours takes both positive and nega-
tive pairs as constraints. Furthermore, the KML methods
are not designed to learn an optimal distance metric but for
some other objectives such as maximum correlations or co-
variances in the common subspace.
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Table 1. Image-to-set object classification results (%) on ETH-I2S.

methods Image-Set Set-Image

NNC 60.83 ± 5.54 77.50 ± 7.72
NCA [6] 70.83 ± 4.39 77.29 ± 4.95
ITML [5] 66.04 ± 4.72 77.29 ± 5.68

LFDA [20] 64.79 ± 4.55 78.75 ± 3.78
LMNN [24] 68.96 ± 4.44 80.00 ± 5.74

NFS [4] 45.00 ± 5.91 77.08 ± 5.29
HKNN [22] 48.75 ± 4.52 66.25 ± 9.76
CKNN [22] 55.21 ± 2.25 77.08 ± 8.10

MD 57.29 ± 3.44 62.71 ± 10.51
PSDML [28] 64.17 ± 7.78 81.25 ± 6.51

KPLS[18]-ES2 74.58 ± 5.88 81.25 ± 5.97
KCCA[9]-ES2 83.54 ± 4.76 92.08 ± 8.21

KGMA[19]-ES2 87.50 ± 1.39 100.00 ± 0.00
LERM-ES1 91.25 ± 2.91 100.00 ± 0.00
LERM-ES2 91.88 ± 1.18 100.00 ± 0.00
LERM-ES3 89.17 ± 2.74 100.00 ± 0.00

5. Experiments

In this section, we present extensive experiments to
demonstrate the effectiveness of our proposed Leaning
Euclidean-to-Riemannian Metric (LERM) method for two
point-to-set classification tasks, including image-to-set ob-
ject classification and still-to-video face recognition.

We compare LERM (implementing in three Euclidean-
to-Riemannian cases EG, EA, ES) with Nearest Neighbor-
hood Classifier (NNC), four state-of-the-art metric learn-
ing methods NCA [6], ITML [5], LFDA [20] and LMNN
[24] and five point-to-set based methods NFS [4], HKN-
N [22], CKNN [22], Mahalanobis Distance (MD) and PS-
DML [28]. We also validate three kernelized multi-view
methods KPLS [18], KCCA [9] and KGMA (i.e., KGML-
DA) [19], which are coupled with our proposed Mapping
Mode II. Except NFS, HKNN, CKNN, the source code of
all above methods are obtained from the original authors.

For fair comparison, we use PCA to reduce the data di-
mension by preserving 95% of data energy for all methods.
For NCA, the output dimension is equal to that of PCA. For
ITML, the lower/upper bound distance are set to the mean
distance minus/plus standard variance and its other param-
eters are set to default values. In LFDA, the neighborhood
number k is set to 7. For LMNN, the number of neighbor-
hood is set to 5, the output dimension is equal to that of
PCA, the maximum iteration times is set to 500, the portion
of training samples in validation is 30%. For HKNN, the
regularization parameter λ is set to 50. For PSDML, we set
its parameters ν = 1, λ = 0.8. For KPLS, KCCA and KG-
MA, the parameters are tuned for the best results. For our
method LERM, we set the parameters λ1 = 0.01, λ2 = 0.1,
the neighborhood number k1 = 1, k2 = 20, all the kernel
widths σ is specified from the mean of distances, and the
number of iterations is set to 30.
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Figure 3. The comparisons of our method LERM in three cases
(EG, EA and ES) with three Mapping Modes on ETH-I2S.

5.1. Image-to-set object classification

As a point-to-set classification task, image-to-set (I2S)
object classification matches single images against sets of
images from objects. We privately construct ETH-I2S based
on ETH-80 [13] object data set, which contains images of
8 object categories. We resized the images to 64 × 64 and
used their raw intensity as input features. On this dataset,
we conducted ten cross validation experiments, i.e., 10 ran-
domly selected gallery/probe combinations. We randomly
chosen 24 image sets and 48 images as training data while
using 48 images and 48 image sets for testing.

Tab.1 summarizes testing results in the I2S object classi-
fication scenario. In image-set classification, we enroll sin-
gle images in gallery and image sets in probe for testing. In
set-image classification, we identify the probe images with
the gallery image sets. Each reported rate is an average plus
a standard variance over the ten runs of cross validation. In
the table, we list the results of our method LERM in ES case
with three proposed Mapping Modes. These results show
that our novel method LERM significantly outperform both
the point-to-set based methods and the state-of-the-art met-
ric learning methods. The results of kernelized multiview
methods such as KPLS coupled with Mapping Mode II in
ES case also validate our method is a good metric learn-
ing framework for exploiting multi-view kernels. Fig.3 il-
lustrates the average matching rates of three Euclidean-to-
Riemannian cases (i.e., EG, EA, ES) with different Map-
ping Modes of our method. From the comparison results,
we can see that our method in various cases with three Map-
ping modes are comparable in this task.

5.2. Still-to-video face recognition

Still-to-video (S2V) face recognition matches still face
images with sets of faces in videos, which can be considered
as a point-to-set classification task. The YTC-S2V dataset is
privately collected by us from the YouTube Celebrities [12],
which has 1, 910 video clips of 47 subjects. Following [23],
each face in videos was resized to a 20× 20 image and pre-
processed by histogram equalization. We also conducted
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Table 2. Still-to-video face recognition results (rank-1 recognition rate (%)) on YTC-S2V and COX-S2V dataset.

Methods YTC-S2V COX-S2V
Still-Video Video-Still Still-Video1 Still-Video2 Still-Video3 Video1-Still Video2-Still Video3-Still

NNC 52.88 ± 2.33 69.15 ± 2.90 9.96 ± 0.61 7.14 ± 0.68 17.37 ± 6.16 7.60 ± 0.69 5.81 ± 0.42 26.37 ± 9.32
NCA [6] 51.74 ± 3.11 60.35 ± 3.09 39.14 ± 1.33 31.57 ± 1.56 57.57 ± 2.03 37.71 ± 1.45 32.14 ± 2.20 58.86 ± 1.87
ITML [5] 47.62 ± 1.73 59.72 ± 4.27 19.83 ± 1.62 18.20 ± 1.80 36.63 ± 2.69 26.66 ± 1.74 25.21 ± 2.10 47.57 ± 2.87

LFDA [20] 57.83 ± 2.67 73.12 ± 2.87 21.41 ± 1.77 22.17 ± 1.77 43.99 ± 1.74 40.54 ± 1.32 33.90 ± 1.40 61.40 ± 1.45
LMNN [24] 55.02 ± 2.71 70.99 ± 3.25 34.44 ± 1.02 30.03 ± 1.36 58.06 ± 1.35 37.84 ± 1.79 35.77 ± 1.37 63.33 ± 2.06

NFS [4] 53.27 ± 2.75 60.21 ± 5.99 9.99 ± 1.17 5.90 ± 0.92 22.23 ± 1.60 11.64 ± 0.81 6.51 ± 0.57 31.67 ± 1.48
HKNN [22] 36.94 ± 2.71 48.01 ± 4.80 4.70 ± 0.33 3.70 ± 0.44 12.70 ± 1.00 6.34 ± 0.50 4.64 ± 0.52 20.41 ± 0.80
CKNN [22] 54.45 ± 3.30 68.94 ± 2.19 7.93 ± 0.56 5.47 ± 0.52 14.83 ± 1.06 8.89 ± 0.75 5.67 ± 0.67 26.24 ± 0.82

MD 56.09 ± 2.91 53.83 ± 5.45 12.81 ± 0.85 10.53 ± 0.79 22.06 ± 1.20 5.34 ± 0.55 1.74 ± 0.42 3.40 ± 1.04
PSDML [28] 55.30 ± 1.90 61.21 ± 5.24 12.14 ± 1.04 9.43 ± 1.41 25.43 ± 1.29 7.04 ± 0.60 4.14 ± 0.52 29.86 ± 1.69

KPLS[18]-ES2 54.02 ± 2.61 64.89 ± 5.18 20.21 ± 2.03 16.21± 1.45 27.23 ± 1.80 14.83 ± 1.93 11.61 ± 1.10 23.99 ± 2.43
KCCA[9]-ES2 55.80 ± 3.12 67.80 ± 3.71 38.60 ± 1.39 33.20± 1.77 53.26 ± 0.80 36.39 ± 1.61 30.87 ± 1.77 50.96 ± 1.44

KGMA[19]-ES2 58.19 ± 4.00 89.36 ± 6.88 41.89 ± 1.54 38.29 ± 1.90 52.87 ± 1.61 38.03 ± 2.42 33.29 ± 1.67 50.06 ± 1.29
LERM-ES1 64.20 ± 2.90 93.83 ± 2.50 19.60 ± 1.30 16.06 ± 0.94 28.54 ± 2.02 23.73 ± 1.32 19.77 ± 1.21 38.60 ± 1.26
LERM-ES2 68.75 ± 2.72 95.53 ± 2.92 45.44 ± 1.12 42.10 ± 1.08 57.04 ± 1.10 41.89 ± 1.95 37.27 ± 1.88 53.50 ± 1.25
LERM-ES3 69.11 ± 2.99 96.60 ± 3.36 45.71 ± 2.05 42.80 ± 1.86 58.37 ± 3.31 49.07 ± 1.53 44.16 ± 0.94 63.83 ± 1.58
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Figure 4. The comparisons of our method LERM in three cases (EG, EA and ES) with three Mapping Modes on YTC-S2V and COX-S2V.

ten cross validation experiments, in each of which one per-
son had 3 randomly chosen videos for the gallery and others
for probes. To design a S2V scenario, we randomly selected
still images from the videos. The COX-S2V [10] is a public
still and video face dataset from 1,000 subjects. Based on it,
we reconstruct a new version2 by adding more videos cap-
tured by another camera. In this dataset, each subject has 1
still images and 3 video clips, which are enrolled into 3 sets
of videos namely Video1, Video2, Video3 respectively. The
still and video faces were resized to 48× 60 and processed
by histogram equalization. In the protocol of this dataset,
300 subjects are randomly selected and their still and video
data are all used for training. From the rest 700 subjects, the
still images and the three sets of videos (i.e.,Video1-3) are
used for different testings detailed below.

As shown in Tab.2 and Fig.4 3, for still-video recogni-
tion, we provide the rank-1 recognition rate of related meth-
ods by querying probe videos with gallery still images. We
also conduct the rank-1 video-still recognition by identify-

2http://vipl.ict.ac.cn/resources/datasets/cox-face-dataset/cox-face
3Please kindly refer to our Supplementary Material for more results.

ing probe images with gallery videos. In Tab.2, each report-
ed rate is a mean value plus a standard variance over the ten
runs of testing. Since little image variance exists in Video3
of COX-S2V dataset, our method LERM can not take ad-
vantage of the set modeling thus its performances are just
comparable to those of NCA and LMNN. The other results
consistently show that LERM achieves much higher recog-
nition rate than other metric learning methods. We attribute
this to our method exploring the specific non-Euclidean ge-
ometry of the space of set models, which typically reside on
a certain type of Riemannian manifold. Besides, compared
with other kernelized multiview methods, the results exhibit
that our approach LERM is the most promising one for ex-
ploiting multi-view kernels. The results of Fig.4 show that
new method LERM-ES3 (ES case, Mapping Mode III) out-
performs other combinations of three cases and three Map-
ping Modes. This is because that ES case models each set
as a covariance matrix, which is more robust set modeling
than linear and affine subspaces [23]. In addition, the Map-
ping Mode III exploits the richest representations of original
Euclidean points and Riemannian points.
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Table 3. Average training and testing time (seconds) on YTC-S2V.

Method NCA ITML LMNN PSDML LERM-ES3
Training 7761 523.2 282.4 55.78 3.615
Testing 46.39 110.8 45.44 4.437 8.865

5.3. Computational cost

We compare the training and the testing time of different
metric learning methods on an Intel(R) Core(TM) i5-
3210M (2.5GHz) PC. The average training and testing time
for total subjects on the YTC-S2V dataset is listed in Tab.3.
The results show that our method LERM is much faster than
other methods in training. Since comparing points with set
models is typically cheaper than matching points with sets
of points when those sets are very large, the PSDML and
LERM methods are faster than others in testing.

6. Conclusion
In this paper, we propose a novel metric learning

framework called Learning Euclidean-to-Riemannian Met-
ric (LERM) for point-to-set classification. Different from
other metric learning methods, our method learns the met-
ric between Euclidean space and Riemannian manifold. Ex-
tensive experiments for image-to-set object classification
and still-to-video face recognition demonstrate that the pro-
posed method impressively outperforms and is faster than
the state-of-the-art metric learning methods in both training
and testing. In the future, this framework can be extended
for metrics between sets or even different kinds of sets.
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